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RESPONSE OF AN ACOUSTIC COATING ON A RIB-STIFFENED PLATE

1. INTRODUCTION

Underwater vehicle hulls are typically metallic with acoustic coatings that are made of a

polymer material. These hulls are usually internally reinforced in one direction to provide

increased stiffness against the hydrostatic forces that act on the hull when the vessel is

submerged. Acoustic coatings are used to produce quieter vehicles, contain sonar sensors,

inhibit drag, and prevent biological fouling on the exterior of the vehicle. Understanding the

structural response of such a system is important for the design of new underwater vehicles and

analysis of existing underwater vehicles. An analytical model of this type of configuration will

allow predictions of the dynamic response of an acoustic coating on a marine structure and any

sonar system that is embedded in the coating.

The research of plate theory has been an ongoing field of study for many years. Thin beam

(Euler-Bernoulli) theory originates in the eighteenth century.' This model is sometimes called a

flexural wave model, and an extremely similar model exists in plate theory. Mindlin 2 modified

thin plate theory to include the dynamics of rotary inertia and shear effects, and this extended the

low wavenumber accuracy of the model. Analysis of wave propagation in fully-elastic plates

consisting of one or multiple layers using Naviers' equations of motion has been studied

extensively and is well documented. 3 Fluid loading has been added to thin plate analysis 4 and

thick plate single and multilayer analysis. 5 Using these techniques, the dynamic response of

fluid-loaded acoustic coating on an unreinforced plate can be calculated and analyzed.

Over the years, plate theory has been expanded to include stiffening effects of ribs that are

typical of many marine and aviation structures. They are almost inclusively placed on one side

of the plate to reinforce the structure. The response of a periodically supported beam to a load

with fixed wavenumber and frequency has been investigated.6 The response of periodically

stiffened fluid-loaded plates to harmonic loading7 and line and point forces8 has been established.

The problem of aperiodicity in the stiffeners has been solved. 9 This problem was also

investigated for a finite number of equally-spaced stiffeners' 0 and randomly spaced stiffeners.

Asymptotic models of plate radiation into fluid fields have also been developed.' 2 It is noted that



these papers6 12 use some form of thin plate theory, and the resulting frequency limit where the

model assumptions are valid depends on the thickness of the plate, but for most plates it is

typically in the hundreds of Hertz. The acoustic response of a fully-elastic cylindrical shell with

a complete acoustic coating has been researched 3 as well as that of a cylindrical shell with a

partial acoustic coating.1 4 There are no rib effects present in either of these papers. Higher

frequency analysis is possible using numerical methods such as finite element analysis; 15

however, these computations can be time consuming and frequently have stability problems

when Poisson's ratio of the coating material approaches 0.5. Recently, a fully-elastic solution to

a plate containing discrete masses was developed.' 6 This method can be extended to model the

behavior of an acoustic coating on a ribbed backing plate.

This report presents an analytical model of a plate in contact with a fluid-loaded acoustic

coating on one side and a series of equally spaced ribs on the other side. The structure is loaded

through the fluid with an incoming acoustic wave. The plate and the acoustic coating are

modeled as three-dimensional fully-elastic solid bodies, the fluid is modeled as a three-

dimensional acoustic field, and the ribs are modeled as discrete springs. The formulation begins
with elasticity theory where the motion in the plate and the acoustic coating are modeled as a

combination of dilatational and shear waves. These waveforms can be used to determine the
three-dimensional displacement fields with unknown coefficients. These displacements are

inserted into stress and continuity equations at the system boundaries and interfaces that contain

the system excitation, the fluid loading, and the force of the ribs on the structure. Using an

orthogonalization procedure produces an m-indexed mathematical model of the system where

each m index is a set of equations twelve rows by an infinite number of columns. All of the m-
indexed equations can be combined and this yields a matrix system of infinite extent, which is

truncated to a finite number of lower wavenumber terms. Inverting this matrix solves for the

unknown coefficients and produces system displacements, stresses, and pressure field solutions.

The fully-elastic model is compared to a previously developed thin plate model at low frequency

and wavenumbers to insure accuracy and consistency to prior work. A numerical example

problem is then studied with specific interest in reception of acoustic signals and strength of the

scattered field. It is shown that the ribs can moderately affect the system response.
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2. SYSTEM MODEL

The system model is that of a fluid-loaded solid layer, called the acoustic coating, in

contact with a rib-stiffened solid layer, called the backing plate, as shown in figure 1. This

problem is analytically modeled by assuming that the pressure in the fluid is governed by the

acoustic wave equation, both solid layers are governed by fully-elastic equations of motion, and

the rib stiffeners are modeled as discrete linear springs. The acoustic coating is loaded on the top

surface with an incoming acoustic wave. The ribs on the bottom of the backing plate are equally

spaced at a distance of L (m) in the x-direction and each has stiffness per unit length of K (Nm-2).

The model uses the following assumptions: (1) the forcing function acting on the plate is a plane

wave at definite wavenumbers in the x- and y-directions and frequency in time, (2) motion in

both plates is normal in the z-direction and tangential in the x- and y-directions (three-

dimensional system), (3) both plates have infinite spatial extent in the x- and y-directions, (4) at

the interface of the acoustic coating and backing plate, the surfaces move in contact with one

another and the stresses are equivalent, (5) the ribs are modeled as springs that have translational

degrees of freedom in the z-direction, (6) the particle motion is linear, and (7) the fluid medium

is lossless.

z

Fluid Loadin gY

Acoustic Coating on Backing Plate

Figure 1. Schematic of Plate System Showing Coordinate System
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The motions of both the backing plate and the acoustic coating are governed the Naviers'

equations of motion written in vector form as

PV 2u(x,,, t)+(A + P)V u(x, y,z, )=p 0 2u(x,y (I)
jt 2

where p is the density (kg m-3), / and !u are the complex Lam6 constants (N m-2), t is time

(seconds), • denotes a vector dot product, and u(x,y,z,t) is the three-dimensional Cartesian

coordinate displacement vector and is written as

u(x,',z,t)=[u(x,V,z,t) v(x,V,z,t) w(x,y,z,t)]T

= VO(x, y, z, t)+V x I,(x, y, z, t), (2)

where q0 is a dilatational scalar potential, V is the gradient operator, x denotes a vector

crossproduct, and Z is an equivoluminal vector potential given by

v)x,,zt)[ (Xy,,t .(X,y,z,t) VZ(X,y,Z,t)] T  (3)

Additionally, the constraint equation on the equivoluminal vector potential is

V @ /(x,y,z,t) = 0. (4)

Expanding equation (2) gives the individual displacements as

u(x, Y z, t) + (X Zt)5)
ax cy az

v(x,yz,t) O(x,Y,z,t) aV1z(X,y,z,t) aV1x(X,Y,z,t )
V(X,1,Z,i) , (6)a) x az

and

4



w(x' ,,z,t) = ao (x,y9,Z,t) + 0YY(X, y,,t '0 /x (X, y, z,t ) (7(x,zt- Dz DDy(7)
az ax ay

Equations (5), (6), and (7) are next inserted into equation (1), which results in four decoupled

wave equations, given by

c2V2 0 (X, y, Z,t) = a2 0 (X' Y'Z't) (8)

Dt2

c2V2 Yx (X, y,,t = a 2 VX(X' Y' Z't) ,(9)

csV 2 (Xzt= & (10)

2 2 D 2z(X,Y,z,t)
S a3t2

where equation (8) corresponds to the dilatational component and equations (9), (10), and (11)

correspond to the shear component of the displacement field. Correspondingly, the constants cd

and cs are the complex dilatational and shear wave speeds (ms ), respectively, and are

determined by

Cd = A+ 2p (12)

and

5



CS (13)

The system equations of motion are formulated as a boundary value problem using twelve

equations of stress and displacement continuity written in terms of the plates' displacements and

corresponding forcing functions. The system is loaded on the bottom by the springs acting in the

z-direction; thus, the normal stress at this location (z = a) is written using a force balance

between the springs and the lower plate as

Ou I (x, y, a,t) av,l(x,y, a,t) awl (x,y, a,t)- Owl (x,Y a,tf)
rzz (x, y, a, t) = A, I ax -+ Oy + az + 2p, z

n=+o (14)
I .Kwl (x, y, a,t) 5(x -nL),

n =-oo

where 5(x - nL) is the spatial Dirac delta function that distributes the force of the springs

discretely and equally spaced in the x-direction and the subscript 1 corresponds to the backing

plate. The tangential stresses at the bottom of the backing plate are zero and are written as

FaVX,y,a,t) Owl(x,y,a,t)-
ry (x, y, a,t) + ] 0 (15)

and

zx(x, y, a,t )  plawl (x, v, a, t) + auI (x, y, a, t)S(,a,)= J +=0. (16)
ax az I

The interface between the backing plate and the acoustic coating is modeled using

continuity of displacements and stresses. Continuity of the stress fields at the interface (z = b)

yields

6



Lu I (x,y, b, t) + av, (x, y, b, t) + awl (x, y,b,t)] 2  awl(x,y,b,t)
ay az I az

A2 'D2 (x,y,b,t) av2 (x, y, b, t) +W 2 (x, y, b,t)] + w2 (x, y, b, t)
22 [ ax a + a a2/z2

E av, (x, y,b,t) , awl (x, y,b, t) =U aV2 (x, y,b, t) + aw2 (x, y, b, t) (18)
az ay oz ay

and

Fawl(x,y,b,t) + aul(x,y,b,t) =P aw2 (x,y,b,t) + au2 (x,y,b,t) (19)[ ax az I ax az J1

The subscript 2 corresponds to the acoustic coating. Continuity of the displacement fields at the

interface yields

u1 (x, y, b, t) = u2 (x, y, b, t), (20)

VI (x, y, b, t) = v2 (x, y, b, t) , (21)

and

W1 (x, y,b, t) = w 2 (x, y,b,t) . (22)

The top of the acoustic coating is in contact with a fluid, and the normal stress at this

location (z = c) is written using a force balance between the pressure in the fluid and the coating

as

[Cu2 (x,y,c,t) + v2 (x,y,c,t) aw2 (x,y,c,t) 1 aw2 (x,y,c,t)
I ax Oy az cz (23)

= -Pa (X, y, c, t),

7



where pa(X,y,c,t) is the pressure field in contact with the top of the plate (N m -2 ). The

tangential stresses on the top of the acoustic coating are modeled as free boundary conditions and

are written as

Frzy (x, y,c,t) 0 +w 2 (x, y,c,t) 0
rzY(X'y'c't) = 2L"  + ] =0(24)

and

Trx(X,y,C't) =,P2 L4'2(x,,C,0 + Ou 2  (x= ,C't) 0. (25)

The acoustic pressure in the fluid medium is governed by the three-dimensional wave

equation and is written in Cartesian coordinates as

02 Pa (X, Y"',z, t) 0 PaCX,I,Z, 0 P,(x, ) _ 1 02 Pa(X,y,Z,t)

Ox2  0y2 az2 c J2 (26)

where pa (x, y, z, t) is the pressure (N m -2 ) and cf is the real-valued compressional wavespeed

in the fluid (m s-1 ). The interface between the fluid and the top of the acoustic coating (z = c)

satisfies the linear momentum equation, which relates the normal acceleration of the plate

surface to the spatial gradient of the pressure field by

0 2 w2 (x,y,c,t) _ Pa(X,y,c,t)

Pf = , (27)at t2  a3z

where pj is the density of the fluid (kg m -3).

8



3. ANALYTICAL SOLUTION

All three displacements are now determined by solving equations (8), (9), (10), and (11),

inserting these results into equations (5), (6), and (7), and applying equation (4) to eliminate two

of the resulting constants. Because of the periodicity in the x-direction, the functional form of

the displacements are equal to the sum of an unknown function in the z-direction, which is

multiplied by an indexed exponential function in the x-direction, by an exponential function in

the y-direction, and by an exponential function in time. Others note this functional form and

discuss its derivation.6 This is written as

uj (x, y, z, t)= Z U( j ) (z) exp(ikmx) exp(ikyy) exp(-icot), (28)
m : -

m=+oC

v.j(x,y,z,t)= Z V(j)(z)exp(ikmx)exp(ikyy)exp(-iwt), (29)
m =-0

and

m=+00

wj(x, y,z,t)= Z W(j (z)exp(ikmx)exp(ikyy)exp(-ica) (30)
m =--OC

where i = V-ii, co is frequency (rad s ),j is either 1, which corresponds to the backing plate or
2, which corresponds to the acoustic coating, ky is wavenumber with respect to the y-axis

(rad m-1), and

km =k x + 2n (31)
L

where kx is wavenumber with respect to the x-axis (rad m-1 ). The functions U(j) (z), V(A (z),
and W (j ) (z) are given by

9



U(j)(z) = A(i)ikm cos[a( )z] + B(j)ik, sin[a( )z ] +Am ~ i m si[Mjz +C(j) kinkY kky(2
- sin[,8' i )z] - D( j ) knk y os[/7('Z] + (32)
E i )qou)(j)z + k32

v -J (z ( ,)k cos[EamJ)z] + B(/)ikv, sin[aU) z] +

~ci[~i)+ ()Sil nZ]+D [+ i + I$l)] cos[It/ ] (33)

k(nk sin[gm)0z] + F m( j) kinm kyc[s8m(i)z],

and

m( j )  sin[ag i )z] + B ('a ) cos[(())z] +

- C2)iky~ cos[3,m1 ) z] - D(m')iky~ sin[/l(,)z] + (34)
+E 1mJ)ikm cos[/J(mj ) z] + (Ak sin[4')z].

where A( }) B ) C ) D(j  Em ) and F ) are unknown complex wave propagation

mm m

coefficients of the backing plate and acoustic coating, a(mj ) is the modified wavenumber

(rad m- ) associated with the dilatational wave and is expressed as

J [k (J)]2 - k2  (35)

where k1
j ) is the dilatational wavenumber on the layer (j) and is equal to (3/c3); is the

modified wavenumber (rad m - ) associated with the shear wave and is expressed as

E-.= [k mk)12 -k2-k ] + 2 (36)

where z)  A is the shear wavenumber on the layer ( ) and is equal toi/z+

10



The pressure field in the fluid consists of an incoming incident pressure wave applied to the

structure at the top (z = c) and an outgoing scattered wave that propagates in the positive z-

direction. Using the analytical form for the pressure field of

p(x, y, Z, t) = EP Pm (z) exp(ikmx) exp(ikyy) exp(-i ot), (37)
M = -00

results in the solution of equation (26) where

Pm (z) = Rm exp(iymz) + 5moPi exp(-iymz), (38)

where i5mO is the Kronecker delta function, P, is the magnitude of the applied pressure field

(N m-2 ), and Ym is the modified wavenumber (rad m 1) associated with the compressional

wave in the fluid and is given by

2 _ 2 2 2 _ 2

The relationship between arrival angles on the plate of an acoustic wave and the x- and y-

wavenumbers is determined by

kx = (co / cf ) sin(O) (40)

and

kY = (co /c f ) sin(O). (41)

where 0 is the arrival angle of the acoustic wave (rad) with respect to the x-axis and 0b is the

arrival angle with respect to the y-axis (rad). A value of 0 = 0 = 0 corresponds to a broadside or

boresight wave exciting the system. For the remainder of the paper, the exponential function

with respect to time is surpressed in the equations.

1l



The displacement fields in equations (28)-(30) are now inserted into the boundary value

equations given by equations (14) through (25). Additionally, the pressure field in equation (37)

and the interface equation listed as equation (27) are utilized, and the resulting equations become

M=+00 M=+00

A,1 ikmU(')(a)exp(ikmx)+2 1iky I V(')(a)exp(ikmx)+

m=+0 aW.)(a) n=+o -m=+007
(A, +2p() a)exp(ikx)= Lm W(l)(a)exp(ikmx)J6(x-nL) (42)

m=-C n=-oo mo

M = +0j a V,,) (a)M=0

P = az exp(ikmx) + /2
1 iky _ W1(a)exp(ikmx)=O, (43)

m=m=+oo
M=-0 M = ---0

/1M=+00" ()•M=+00 a U () (a) epim ) =0(4
Pl I ikmWn (a)exp(ikmx) +/2 Zp M  exp(ikmx) 0, (44)M OzM = -O(D m =-

M=+OC M=+01-

A1  lkmUm(b) expkmx)+± ,i1ik, I V(m)(b)exp(ikmx) +
m=-OC M=-00

(2 + 2/21) I W exp(ikmx) = A2 I ikmU(m (b)exp(ikmx) +
M=-00 M=-OC

Z2ik Z V (2)(b)exp(ikmx)+(2 2 +2/22) m aWrm2(b)exp(ikmx), (45)
Caz

i I(b) exp(ikmx)+/2lik. I W(l)(b)exp(ikmx) =

m=+oc av() m=+

P22 M OVm2)(b) exp(ikmx) + P2 ik, W,(2)(b)exp(ikmx) (46)
M1200  M=-00

12



m=+O m=+ aU(')b)
I ikmW(l)(b)exp(ikmx)+,Ul p UM1  exp(ikmx)

M=-00 M=-30 a

m =Oo m+ au2(b)
P2 Z ikmW(2)(b)exp(ikmx)+ P2 E CU(2)(b exp(ikmx), (47)

M=0M=-Co az

U( ) (b)exp(ikmx) = U( 2 ) (b)exp(ikmx), (48)
M = -0 M =--o

m=+00 m=+Oo
V(1)(b)exp(ikmx)= V(2)(b)exp(ikmx), (49)

m=-0 M=--0

m=+O D m=+O "
I W()(b)exp(ikmx) = I W(2)(b)exp(ikmx), (50)
M=X +M=-m

2 Z ikmUm (c) exp(ikmx) +A2ikv V(2) (c)exp(ikmx) +
M

= 
-ro M=-o00

M=O)W( 2 )(C) M+(CO ' 1,2)c x(kx
(+ 2 2 2) m exp(ikmx) + I Wm2) (c) exp(ikmx)

M=-O az m=-Ocj 'Yin )

- 2PI exp(ikxx), (51)

m=+,o a v 2) (C) M+0

P2 I aV exp(ikmx)+P2iky Z W( 2)(c)exp(ikmx) = O , (52)
M =--00 M=-----Oox

and

P2m=+ ikmWm2)(c)exp(ikmx)+ P2m=+Oo g 2) (c) exp(ikmx) = 0, (53)
M = -o0 m=-00

13



To eliminate the Dirac delta comb function present in equation (42), a form of the

Poisson's summation formula written as

n= +o I n=--+oo

Y,5 (x-nL)=- I:--exp(i2Z7nx/L) (54)

n=-cf. nl=-ooi

is used. Furthermore, the identity

l n=+oo M= + I I [n=+ ,m= +W
-L Z W(o)(a)exp(ikmx) exp(i2mx/L) = 1 _ WI)(a)] xp(ikmx) (55)

n=-oc Lm=-oc nm=-ooM-.X

is also applied to equation (42). This modified version of equation (42), with equations (43)-

(53) are all multiplied by exp(-ikpx) and integrated from [0,L]. Because the exponential

functions are orthogonal on this interval, the equations decouple into sets of rn-indexed equations

expressed as

aW~'() Kn=±coo
A,ikmUm i 2()) (a) (a)i, -V K W, ) (a), (56)

n. = -O

a- +j'u l ik 1,W, (a) =0, (57)

- (1)(a)

juimW() mi =0- , (58)

ia(l z

A,ikmU e( ) (b) + A,ik V (n) (b) + (A1 + 2,ul) Wr (b)
Oz

A2 ikmU(2)(b) + A2 ikv(2) (b) + (A, + 2/P2) aW 2 )(b) (59)
az

14



a V(2) (b) (60)
l) ( ±-uliky,W(1)(b)=t 2  W

aU (l)(b) aU ()U(2) (b )
1ikm. W (I) (b) +,u1 -=m P 2 ik m Wm(2 (b) + pl2 , (61 )

az az

U(1)(b) = U(2)(b), (62)

V(')(b) = V(2)(b), (63)

W(l)(b) = W(2)(b), (64)

A2ikmUm(c)+ A2ikyV(2)(c)+(A2 + 2,U2) a +az

Yin 0 m#0, (65)

av 2) (c) • ui~W~~c 0 (66)

/12 az + t2 ikyWm (C) = 0 (66)

and

a U (2) (c)
P 2 ikmWm2 (c) + /12 = 0. (67)

az

The functional form of the displacements given in equations (32), (33), and (34) are

inserted into equations (56)-(67) and the resulting algebraic matrix equation for each m-indexed
coefficient is
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tl=+00t} m =0
[A(km )] {x(k,,)j = j:[F(kn)] {x(kn) +

n=-o m# 0, (68)

where [A(km)] is a twelve by twelve matrix that models the dynamics of the backing plate and

the acoustic coating, {x(km) } is the twelve by one vector of unknown wave propagation

coefficients, [F(k n )] is the twelve by twelve matrix that models the dynamic interaction of the

springs and the backing plate, and {p} is the twelve by one matrix that models the incoming

acoustic wave acting on the structure. The entries of the matrices and vectors in equation (68)

are listed in the appendix. Equation (68) is now written for all values of the index m and the

results are inserted are rewritten in global matrix form as

A P =F + l, (69)

where A is a block diagonal matrix and is written as

A(k-I) 0 0

0 A(ko) 0 (70)

0 0 A(kI)

F is a rank deficient, block partitioned matrix and is equal to

F(k-l) F(k 0 ) F(k])

F(k-,l) F(ko) F(kj) , (71)

F(k- 1) F(k0) F(k1)
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p is the system excitation vector and is written as

= 0 T .T IT ..]T, (72)

and i is the vector that contains the unknown wave propagation coefficients and is equal to

i=[.. {x(k-l)}T {x(k 0 )}T {x(k 1)}T ...]T, (73)

where

tx(k0)}=[A( 1) B( 1) C(O  D()..1 F'

0 0 0 0 0 0

A(2  B(2) C(2  D(2 E(2) F(1)]T  (74)
.. 0 ) 0 0 )DE0 0

The 0 term in equation (70) is a twelve by twelve matrix with all zero entries and the 0 term in

equation (72) is a twelve by one vector with all zero entries. The solution to the wave

propagation coefficients is now found by truncating the matrix equation (69) to a finite number

of terms and solving

i = [A,-F ]-11. (75)

Once these are known, the displacement field of the system in the spatial domain can be

determined using equations (32), (33), and (34). Furthermore, the stress distribution in the

backing plate and the scattered acoustic field can be computed.
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4. MODEL VALIDATION

The fully elastic model that has been developed in sections 2 and 3 can be compared to a

fluid-loaded, ribbed, Bernoulli-Eular thin plate that has been previously developed. 7 -9 This will

provide validation of the model for low frequencies and small plate thickness. This Bernoulli-

Eular model, however, only incorporates flexural wave behavior, making the model assumptions

invalid at higher frequencies and wavenumbers. The thin plate model has one degree-of-freedom

that is constant displacement in the z-direction. This displacement equation is written as

m=+o

w(x, y)= I Wm exp(ikmx)exp(ik y y) , (76)
m =-o0

and this displacement field can be determined by

{w}= [T+ R]'If} , (77)

where

{w}={... W 1 W0  W1 ... }T, (78)

T (- ' 0 0

[T]= 0 T (° )  0 (79)

0 0 T(l )
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[R]=(K/L) ... 1 1 1 .. (80)

and

{f}{. 0 -2P 1  0 ... }T (81)

In Eq. (79), the indexed entry is

T( n ) D(k4 + k k2 + k4) - ph(02 + (p.f 2 / iy ,), (82)

where

D- E 3  (83)
12(1-v 2 )

where E is Young's modulus (N m -2 ) and v is Poisson's ratio (dimensionless).

Figure 2 is a plot of the magnitude of the transfer function of the plate normal displacement
(w) divided by the amplitude of the applied incident pressure field (P ) versus k, wavenumber

(top) and k wavenumber (bottom) at a frequency of 10 Hz. In the top plot, the k

wavenumber was equal to 2 rad m 1 and in the bottom plot the kx wavenumber was also equal

to 2 rad m-1 . This extremely low frequency was chosen because it is a value at which the thick

plate model should theoretically agree with the thin plate model. This example was generated

using the following system parameters: total plate thickness h is 0.005 m, plate density p is 1200
kg m -3 , Lam6 constants A, and A2 are 9.31 x 108 N m-2 , Lam6 constants p1 and P 2 are

20



1.03 x 108 N m-2 , fluid density pf is 1025 kg m 3 , fluid compressional wavespeed cf is 1500

m s- l , rib stiffness per unit length K is 2 x 10 N m 2 , spatial location x is 0, spatial location y

is 0, and rib separation distance L is 0.5 m. For the thick plate model, the plate interface region

location b is -0.003 m and the output location was z = -h/2, which is -0.0025 m. In figure 2, the

solid line is the fully elastic plate theory developed above and corresponds to equation (30) and

the dot symbols is the Bernoulli-Eular plate theory and corresponds to equation (76). The elastic

plate model was truncated to seven modes that produced an 84-by-84 system matrix and the thin

plate model was truncated to 51 modes. There is almost total agreement between the two models

over both wavenumber variables.
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5. AN EXAMPLE PROBLEM

An example problem is now generated and discussed. This problem consists of a 0.0065-m

(0.25-inch) thick aluminum plate coated with a 0.0254-m (1-inch) thick urethane polymer

coating. This example was generated with the following parameters: aluminum Lamd constant
10 2 1 2-A, is 5.11 x 10 Nm -2 , Lam6 constant 1u is 2.63 x 101 0 Nm 2 , density p, is 2710 kg m 3 ,

urethane Lamd constant 22 is 2.09 x I09 N m 2 , Lam6 constant 22 is 7.14 x 107 N m 2

density P2 is 1110 kg m-3 , urethane structural loss factor is 0.05, fluid-compressional

wavespeed cf is 1475 n s- 1 ,fluid density pf is 1025 kg m-3 , internal rib spacing L is 1.00 m,

and rib stiffness per unit length K is 1.20 x 1010 N m-2 . The problem is investigated from two

technical standpoints: (1) the reception of an acoustic signal and (2) the echo reduction of an

acoustic emission directed at the system. Because the major interest of this analysis is response

to an acoustic wave in the fluid, subsequent figures are shown with respect to arrival angles

rather than wavenumbers. The relationships between arrival angles and wavenumbers are given

by equations (40) and (41).

The reception of an acoustic signal in the urethane can be accomplished by an internal

array of sensors embedded in the coating. A typical sensor in a solid material will detect average

normal stress, determined mathematically using the equation

rave(X, Y, Zs,O)= 'x(X, y, ZS' CO) + y (X, Y, Zs, CO) + F zz(X, Y, ZS , CO)(84)
3

where z, is the location of the sensors along the z-axis (m). Figure 3 is a plot of the magnitude

of the average stress divided by the incident pressure versus 0 arrival angle for qk arrival angle

equal to 0 degrees (top) and average stress divided by the incident pressure versus Oarrival angle

for q0 arrival angle equal to 45 degrees (bottom) at a frequency of 8027 Hz, a value of y = 0, and a

value ofz , = -0.0102 m. In figure 3, the solid line is the fully elastic plate theory with ribs atx =

0, the long dashed line is the fully elastic plate theory with ribs at x = L/2, and the short dashed

line is the fully elastic plate theory without ribs at any x value. Note that the addition of the ribs

has made the stress field become spatially varying, and that different magnitudes will be present

at different values of x.
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Once the average stress field has been calculated, the summed acoustic response to an
incident pressure field at fixed frequency and 0 = 0 (or ky = 0) can be computed using

N
B(kx, C) = I Fave (Xn,0, Zs, co) exp(-iksx n ), (85)

n=1

where N is the number of sensors in the array, k, is the steered wavenumber of the array with

respect to the x-axis (rad m-1), and x, is the location of the nth sensor (m). The effect of the ribs

is examined here with respect to a 16-element linear array oriented in the x-direction with an

interelement spacing of 0.0625 m. Using these parameters, the summed acoustic response of the

array is computed using a uniform shading function and the results are shown in figure 4. In

figure 4, the top plot is the array steered to 0' and the bottom plot is the array steered to -45' .

The solid line is the array response for the system with ribs and the dashed line is the array

response for the system without ribs. Note that for the array steered to 0' and -45', the rib

structure slightly widens the beam and surpresses the maximum response. Additionally, the side

lobe structure of the array response is shifted outward to a greater angle for the ribbed response.

The ribs also surpress the energy in the side lobes past the second side lobe.
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In underwater structures, the scattered pressure field is an important quantity for quiet

operation. The scattered pressure field divided by the incident pressure field is given by the

expression

P.(x,i,o) _ exp(ikxx) exp(ikyy)+ m 2 W()(0)exp(ikmx)exp(ikyy) , (86)

PI m=-- r Ym

where Ps (x, y) is the scattered pressure field in the spatial-frequency domain, the first term on

the right-hand side is the reflected pressure field, and the second term on the right-hand side is

the radiated pressure field caused by normal displacement of the plate. Figure 5 is a plot of the

magnitude of the scattered pressure divided by the incident pressure versus 0 arrival angle (top)

and q5 arrival angle (bottom) at a frequency of 8027 Hz. In the top plot, the q0 arrival angle was

equal to 00 and in the bottom plot, the 0 arrival angle was equal to 45' . In figure 5, the solid line

is the fully elastic plate theory with ribs at x = 0, the long dashed line is the fully elastic plate

theory with ribs at x = L/2, and the short dashed line is the fully elastic plate theory without ribs

at any x value. The ribs add about a 2 dB spatial variation to the scattered pressure field when

compared to the system without ribs. This differential is frequency dependent as it is more

pronounced at various frequencies.

27



4 _ ~ ~ ~ 1 -I-

23

2 2

-3

S-4

-80 -60 -40 -20 0 20 40 60 80
0OArriva I Angle (degrees) O= 0 degrees

22!

E 0

2)

-3

~-'

-80 -60 -40 -20 0 20 40 60 80
OArivalI Angle (de gre es) O= 45 de gree s

Figure 5. Transfer Function Magnitude of Scattered Pressure Divided by Incident Pressure
at 802 7 Hz with 0 = 0 '(top) and 0 = 45S*(bottom) for the System with Ribs at x = 0 ___),x

=L/2 (--)and System without Ribs at any x Value(---)

28



6. CONCLUSIONS

A fully elastic analytical model of a system that consists of a ribbed plate covered by a fluid-

loaded acoustical coating has been derived. The model has been shown to agree with previously

developed thin plate solutions to the problem at low frequency. An example problem was

developed to illustrate high-frequency behavior and a comparison between the ribbed and

unribbed structures is included. The specific solutions of embedded sonar system performance

and scattered pressure field were investigated. It was shown that the ribs have a moderate effect

on the high frequency dynamic response of the structure.
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APPENDIX
MATRIX AND VECTOR ENTRIES

The entries of the matrixes and vectors in equation (75) are listed below. Without loss of

generality, the top of the top plate is defined as z = c = 0. For the [A(kn)] matrix, the nonzero

entries are

a,,, = {-2l[(a 1 )2 +k2 + k2)]- 2p (a(l))2} cos(a( 1)a), (A-I)

al,2 = {-2.l[(a (1))2 + k 2 + k2)]- 2p,l (a( 1) )2 } sin(a(nla), (A-2)

a, 3 = 2i/ n  nk in(,a(' (A-3)

a,4 = -2iufl1,')k cos(,8(1)a), (A-4)

a1,5 = -2iulu,8 (1) k
n sin(,8( 1)a), (A-5)

a 2,6 = ,()k cos(,( )a), (A-6)

a2,1 =-2ipulan )k sin(a n )a), (A-7)

a 2 ,2 = 2ipula (1 )k y cos(a (1 ) a), (A-8)

a2,3 =-,U[(1))2 +k 2 -k 2 ]cos(fi8(1) a ) ,  (A-9)

a 2 ,4 =-PI[(6( 1 ))2 +k -ky ]sin(,6() a), (A- 10)

A-1



a2 ,5 = -2p,l kkn cos(,6(')a), (A- i)

a 2 ,6 = -2,ulkyk sin(,8()a), (A-12)

a 3 1 = -2ipla'1)k,n sin(a,( 1)a), (A-13)

a 3 2 = 2ipla('n)kn cos(a,}71)a), (A-14)

a 3,3 = plknky [cos(fi')a) - sin(,(')a)], (A-15)

a 3.4 = Ulknkl[sin(f,( 1)a)-cos(i8(1)a)], (A- 16)

a3 5 = ) k ] cos(,6(1)a) -/u,k sin(fl,8')a), (A-17)

a 3.6 =P [(8(l) )2 -k 2 ]sin(16 (I)a)- plk cos(,6n1)a), (A- 18)

a 4,1 = {-2 1 [(a(l)) 2 +k+ k)]- 2pl (a( 1l)2 }cos(a(l)b), (A- 19)

a4,2 = {-A1 [(a(n))2 + k +k2)]- 2 p, (a(')2 sin(a(')b), (A-20)

a4 ,3 = 2iplfi 1 )kyV sin(f,(')b), (A-21)

a 4,4 = -2iplfi,81)k cos(,Y(')b), (A-22)

A-2



a4 ,5 = -2iylI8')kn sin(n,'1b), (A-23)

a 4,6 = 2iulgin)kn cos(,6()b), (A-24)

a 4,7 = {22[(c() )2 +kn + ky)] + 2 ,U2 (nr(Z))2 } cos(()b), (A-25)

a4 ,8 = 12 [($1 (2))2 + k2 +k2)]+ 2 2 ( ))2 }sin(a(2 )b), (A-26)

a 4,9 = -2i 22f!(2 )ky sin(,8(2)b), (A-27)

,gs (2 (,(2 b

a 4,10 = 2i /n( 2 )ky cosC8-'n ), (A-28)

a4,11 = 2iu2
242)kn sin(8n(2)O), (A-29)

a 4,12 = -2iU 2 )q(2 )kn cos(,(2)b), (A-30)

a5 ,1 = -2i/la(')ky sin(a( 1)b), (A-31)

a5,2 = 2i,ula(1)ky cos(a(1)b), (A-32)

a5 3 =_-U1 [(f81))2 + 2 - k 2 ]cos(f,(1) b), (A-33)

a5,4 = -Pl[(p(l) )2 + k 2 - k2 ] sin(,8 () b), (A-34)

a5,5 = -2,Ulkykn cos(,( 1)b), (A-35)

A-3



a 5,6 = -2pkvk, sin(,8n(1)b), (A-36)

a 5,7 = 2i/P2a( 2 )k, sin(an2 )b), (A-37)

a5 8 = -2i"2a 2 )k, cos(a. 2 )b), (A-38)

a5,9 = P2 [(fi(2)) 2 + k 2 -k 2 ]cos(q(2)b), (A-39)

a5,10 =Pfl( 2 ) 2  +k 2 -k']sin(8( 2 )b), (A-40)

a5,11 = 2P 2 klkn cos(n(Z)b), (A-41 )

a 5,12 = 21u2k,kn sin(/1n(2)b), (A-42)

a61= -2 p a() sin(a (')) (A-43)

a 6,2 = 2ipla(l)kn cos(a(l)b), (A-44)

a 6,3 = plknk [s(,8 (')b ) - sin(J,9(1)b)], (A-45)

a 6,4 = plknk,.[sin(fl(l)b)-cos(f,(')b)], (A-46)

a 6 ,5 = n/l[(fl(l))2 -kn] cos(,(1) b) - p,ky sin(f8(1)b), (A-47)

A-4



a 6 ,6 =/-tl [(,8(1))2 -k' ]sin(/3()b)-u,k' cos(,(1)b), (A-48)

a 6 ,7 = 2ip 2 a( 2 )kn sin(a(2)b), (A-49)

a 6 ,8 = -2ip 2 a (2)kn cos(a(2 )b), (A-50)

a 6 ,9 = -fl2knky [cos(3(2)b) - sin(/6( 2)b)], (A-51)

a 6 ,1 0 = -P2 kn ky [sin(f8(2 )b) - cos(/8(2 )b)], (A-52)

a 6 ,1 1 = -,U2 [(p(2))2 - k 2 ]Cos(,(2)b) +,u2ky sin(/8(2 )b), (A-53)

a 6 ,12 = -P2 [(n( 2 )) 2 - kn ]sin( 2 )b) + P 2 k 2 cos(n(Z)b), (A-54)

a7,1 =ikn, cos(a(1)b) , (A-55)

a 7 ,2 ikn sin(a n b ) ,  (A-56)

a7 ,3  knk y sin(/6 1 )b), (A-57)

a7  -knk y cos(8(1)b), (A-58)

Pn

a 7,5 = + (1) + sin(f,(1)b), (A-59)

A-5



a 7,6 + cos(,8')b), (A-60)

a 7 ,7 = -ik n cos(a(2)b), (A-6 1)

a 7,8 = -ik n sin(a( 2 )b), (A-62)

a 7 9  -kk sin( 2 )b) (A-63)
,(2)

kakv cos(f8(2)b) (A-64)
a7 ,10  (2)

a 7,11 = ri +(2) Jsin(f8n2)b), (A-65)

a7,12f )q()+ky2cs,(

a7 n12 = ,,2) + cos(f2)b), (A-66)

a8,1 = ik 1 cos(a(l)b), (A-67)

a8 2 = ik, sin(a(,')b), (A-68)

a8 ,3 = -(81) + k2 sin(f6(l)b), (A-69)

A-6



a8 ,4 = 8(l) + cos(J,()b), (A-70)
n

a8,5  knk sin(fq()b), (A-71)

a 8,6 = k(---cos(,8(')b), (A-72)

a 8,7 =-ik , cos(a 2 b), (A-73)

a 8,8 = -ikv sin(a(2 )b), (A-74)

a8 ,9 = r(2) + ln((2(-75)

a8,9 = n 8(2) k2 Jcos(1 8(2)b), (A-76)

fi(2 2
2)k + n O('(

a8 ,11 -=2k-k y sin ( ,q ( 2)b ) , (A -7 7 )

-k kkgv

a8, 12 = ---- "-COS(n()b), (A-78)

A-7



a9 1  -n~sin(a( )~b), (A-79)

a,2  n cos(an(l)b), (A-80)

ag3 = -ik, cos(fi(l)b), (-1

ag = -ik,, sin(f,()b), (-2

ag5 = ik cos(,8( 1
1 b), (-3

a,5 n iksn'b (A-8)

ag, = ik sin(8(1)b), (-5

a9 ,6 7 cos( (A-84)

ag, = a(2) csi((/,2 )b), (-7

,70 nk 1 sn 2 b (A-88)

a91 8 = -an~ cos(an )2 b), (A-86)

a9 ,12 = -ikn sin(/ nb) (A-90)

a, 0,7 = -2[(an ) +k + kv)]- 2P2 (an~) 2  (A-91)

A-8



2 (2)
a1 0 ,8  , (A-92)

iYn

-ow p fky A-3

a10 ,9 - , (A-93)
7n

al 0 ,10 = -2iP,2 n(Z)ky, (A-94)

82

al 0,11  = 0 P kn , (A -95)

a 1 0 ,12 = 2iP2 n(2 )kn, (A-96)

a, 1,8 = 2i- 2 an()ky, (A-97)

2 2
al1 ,9 =-,42/n +k 2 -ky), (A-98)

a 1, 1 1 = -2P 2 knky, (A-99)

a 12 ,8 =2iP2 anZ)kn, (A- 100)

a 12 ,9 =/U2 knkV, (A-101)

a 12 ,10 = -Pu 2 knky, (A-102)

a12,11 = P-Z 2) 2 -k2], (A-103)

A-9



and

a12,12 = -2k2. (A- 104)

The nonzero entries of the [F(k,)] matrix are

=1,1 -(K 1L) a()n) a()a
= sin(a n -.), (A-105)

f,2= (K /L) aM cos(a n a), (A-106)

J,3 = -(K / L) ik, cos(fg(/)a), (A-107)

fl,4 = -(K / L) iky sin(,8(1) a), (A-108)

fl,5 = (K / L) ikn cos(,6(')a), (A-109)

and

11,6 = (K/L)ikn sin(fi(')a). (A-I 10)

The entries of the p vector are

p=[0 0 0 0 0 0 0 0 0 -2P 0 0] (A-Ill)

A-10
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